Shaping Curricular Guidelines for Associate-Degree Cybersecurity Programs

Melissa Stange, Cara Tang, Christian Servin, Cindy S. Tucker, Markus Geissler

Overview of the Guida

- Uses the ACM Cybersecurity Curricula 2017 (as a starting point
- Includes contemporary cybersecurity concept
- Identifies essential and supplemental knowled for associate-level cybersecurity programs

Driving Factors

- A top U.S. priority to build a highly capable cybersecurity work
- Worldwide security spending hit \$96.3 billion in 2018
- 58% of business owners with up to 29 employees have been cyber-attacks
- Job predictions that information security analyst will grow by 28 2016 and 2026
- Creation of CSEC2017

Process

Under the auspices of the ACM Education Board, the Col Computing Education in Community Colleges (CCECC):

Phase 1: Develop a initial draft called StrawDog Febru

- Convened a task force of community college educator the initial draft of the updated guidance
- Convened advisors from industry and universities
- Identified CSEC2017 aspects appropriateness at the junior/community college level
- Consider other influences such as CAE2Y knowledge uni 2019 Foundational + Technical Core and professional code of
- Built the guidance on a framework of learning outcome
- Released for public review and comment

Phase 2: Develop a second draft called IronDog July

- Incorporate feedback on StrawDog
- Consider additional influences such as NICE Cybersed Workforce Framework
- Provide competencies for each knowledge area
- Release for public review and comment

Phase 3: Final Version Q1 2020

- Incorporate feedback on IronDog
- Release for public review and comment

nce	Knowledge Are	as (
	Jata Security	√ Sy
CSEC2017)	Software Security	🗸 Ηι
	Component Security	🗸 Or
ots	Connection Security	√ Sc
dge areas	Knowledge Ur	nit (l
	Cryptography	≻ Cor
	 Digital Forensics Data Integrity and Authentication 	> Ider > Soc
	 Access Control Second Commission Distance 	> Awa
6	 Secure Communication Protocols Cryptanalysis 	PerUsa
KTORCE	 Data Privacy Information Storage Security 	RisSec
victims of	 Software Analysis & Testing 	> Cyk
	 Ethics Component Reverse Engineering 	> Cyk > Cyk
28% between	 Distributed Systems Architecture Network Defense 	> Cyk > Priv
	 System Thinking 	<i>/</i> 1111
	Learning Outco	mes
	• Essential - appropriate for a	all 2-vea
ommittee for	 Sunnlemental - appropriate 	a for son
uarv 2019	Sample Learnir	ng Ul
to develop	Use historical ciphers, such as sh	nift ciphe
	others to encrypt and decrypt da	, Hill cipi ita
	Apply fundamental design princip	oles inclu
	design, and abstraction	
	Discuss security threats and risks	s to both
its (KUs) - f othics	component procurement, such as	s malwa
	Compare the OSI model and the	
53	Compare the OSI model and the	
	Illustrate how different managem	ent com
2019	system from attack.	
	Appraise individual responsibilitie	es relate
curity	jdentification and use of safe web	, and sto
	appropriate privacy settings.	אנט, מו
	Summarize significant national a	nd interr
	cybersecurity.	
	Distinguish among ethical hacking criminal hacking and acts of war	g, nuisa
	Distinguish among ethical hackin criminal hacking, and acts of war Investigate cultural differences in	g, nuisa . the exis
	Distinguish among ethical hackin criminal hacking, and acts of war Investigate cultural differences in boundaries.	g, nuisa the exis
	Distinguish among ethical hackin criminal hacking, and acts of war Investigate cultural differences in boundaries.	g, nuisa the exis

KAs)

- ystem Security
- uman Security
- rganizational Security
- ocietal Security

(U) Sampling

- mmon System Architectures entity Management cial Engineering areness and Understanding rsonal Data Privacy and Security able Security and Privacy k Management curity Governance & Policy bersecurity Planning bercrime ber Law
- ber Policy vacy

Classification

r cyber programs

me 2-year cyber programs

utcomes (LOs)

er, affine cipher, substitution her, Enigma machine, and

uding least privilege, open

hardware and software in re attached during

model.

ponents protect the operating

ed to cyber hygiene, such as orage; mitigation tools; nd identifying and using

national laws that relate to

ance hacking, activist hacking,

stence of privacy norms and

Sample Competencies

Perform major database administration tasks such as create and manage database users, roles and privileges, backup, and restore database objects to ensure organizational efficiency, continuity, and information security.

Analyze the security of a software system and its related data and apply secure programming practices.

Implement policies and procedures in accordance with national and international laws to protect information security.

Distinguish and mitigate vulnerabilities of system components.

Evaluate and describe organizational policies, rules, and norms with security implications.

Summarize the components of a business continuity plan that ensures minimal down time and quick recovery in the face of cybersecurity incidents or natural disasters.

Describe trends in human behavior which pose risks to individual and organizational privacy and security.

Contact Us

For project overview, status or to comment on IronDog, visit the project website at ccecc.acm.org/guidance/cybersecurity

